自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 论坛 (1)
  • 收藏
  • 关注

原创 Python2中的input

Python2使用input获取控制台输入的时候回出现错误,具体错误如下:#-*-coding:utf8-*-string=input("请输入字符串:")print(string)结果如下:C:\Python27\python.exe D:/pycharmprogram/aiml/aimllearn/input_learn.py请输入字符串:我Traceback (most recent...

2018-04-26 13:34:30 1587

转载 gensim中LDA生成文档主题,并对主题进行聚类

gensim入门学习资料如下:学习连接gensim中lda模型官方文档:官网使用gensim中的LDA模型计算主题:代码地址corpo.Dictionary(texts)方法介绍:texts=[[word11,word12,....],[word21,word22,word23,],[word31,....]]word11中第一个1是代表第一篇文章,第二个1表示文章中的第一个词语(进行分词后的词语...

2018-04-16 13:16:36 6908 2

转载 使用Stanfordnlp进行句法分析

斯坦福句法分析器安装和使用方法如下:句法分析器学习

2018-04-16 08:54:26 1263

转载 交叉熵损失函数

熵代表信息的不确定度什么是信息论中的熵?在机器学习模型中我们通过损失函数在缺点真实值和预测值之间的差异大小损失函数的介绍常用的损失函数有平方和损失函数和交叉熵损失函数,文本主要记录交叉熵损失函数,而相对熵和交叉熵有很大的关系什么是相对熵?什么是交叉熵?以逻辑回归为例,介绍交叉熵损失函数逻辑回归下面介绍熵,交叉熵和相对熵的区别各种熵的区别...

2018-04-12 09:22:51 589

原创 以反馈神经网络为例讲解深度学习流程

import numpy as np#使用逻辑回归进行分类def nonlin(x,deriv=False): if(deriv==True): return x*(1-x) return 1/(1+np.exp(-x))#待分类的数据X = np.array([ [0,0,1], [0,1,1], ...

2018-04-11 15:10:44 2074

转载 梯度下降法更新参数

我们使用梯度下降法对参数进行更新学习连接

2018-04-11 15:00:06 2415

转载 logistic regression 和 softmax regression的损失函数

损失函数对比学习连接

2018-04-11 14:51:31 186

转载 为什么用交叉熵作为损失函数?

学习连接一般我们使用平方差作为损失函数,(y^'-y)^2作为损失函数,这种损失函数在进行梯度下降计算的时候会出现梯度弥散,导致学习速率下降,使用交叉熵作为损失函数可以很好的解决这个问题。...

2018-04-11 14:49:04 1355

转载 三种激活函数对比

激活函数的选取要避免出现梯度消失的问题和避免出现梯度下降速率过慢导致训练时间太久。学习连接

2018-04-11 14:33:24 824

转载 sigmod和tanh的区别

sigmod和tanh是两个比较常用的激活函数对比连接

2018-04-10 11:00:02 769

原创 numpy.hstack学习

hstack函数可以实现矩阵的拼接import numpy as npa = np.array((1,2,3))b = np.array((2,3,4))print(np.hstack((a,b)))a = np.array([[1],[2],[3]])b = np.array([[2],[3],[4]])print(np.hstack((a,b)))实验结果:"C:\Program...

2018-04-10 10:39:32 280

原创 numpy.unpackbits学习

unpackbits函数可以把整数转化成2进制数。import numpy as npa = np.array([[2], [7], [23]], dtype=np.uint8)b = np.unpackbits(a, axis=1)print("a",a)print("b",b)输出结果:"C:\Program Files\Anaconda3\python.exe" D:/pychar...

2018-04-10 10:34:33 4543

转载 zeros_like学习

zeros_like(A)可以生成跟A矩阵的shape一样的矩阵学习连接

2018-04-09 14:20:43 123

原创 Python中的for关键字

import numpy as npy_list = [-0.5, 0.2, 0.1, -0.5]x=[1 for _ in y_list]print(x)实验结果:"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/lstm_learn/lstm-master-test.py[1, 1, 1...

2018-04-09 13:33:28 401

转载 random.seed方法学习

random.seed()根据随机种子确定随机值,如果随机种子相同随机值相同,但是种子只能在下一次生成随机数的时候有用。学习连接

2018-04-09 13:25:54 1067

原创 MEMM算法Python实现

MEMM比HMM的的区别是没有转移概率,只计算<S(t),O(t+1)>条件一下S(t+1)的概率学习网址训练代码如下:#-*-coding:utf8-*-PROB_START = "data\prob_start.py" # 初始状态概率PROB_EMIT = "data\prob_emit.py" # 计算给定标签下,观察值概率矩阵观察值是<St,Ot+1>而不...

2018-04-08 11:23:27 885

原创 HMM算法Python实现

训练代码主要生成发射概率和转移概率以及在特定标签下的观测值概率学习网址#-*-coding:utf8-*-PROB_START = "data\prob_start.py" # 初始状态概率PROB_EMIT = "data\prob_emit.py" # 发射概率PROB_TRANS = "data\prob_trans.py" # 转移概率start_fp = open(PROB...

2018-04-08 09:31:56 1470 2

原创 HMM,MEMM,CRF算法对比

2018-04-06 13:53:52 488

空空如也

勿在浮沙筑高台LS的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除