自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 论坛 (1)
  • 收藏
  • 关注

原创 tf.diag_part学习

diag_part( input, name=None)返回张量的对角线部分。该操作返回与该diagonal部分的张量input。该diagonal部分计算如下:假设input有尺寸[D1,…, Dk, D1,…, Dk],那么输出是等级的张量,k其尺寸为[D1,…, Dk]:diagonal[i1,…, ik] = input[i1, …, ik, i1,…, ik]。 例如:

2017-09-25 10:34:43 5391 2

原创 tf.diag学习

diag( diagonal, name=None)返回具有给定对角线值的对角张量。给定一个diagonal,这个操作返回一个张量,其中diagonal一切都用零填充。 假设diagonal具有尺寸[D1,…,Dk],则输出是具有尺寸[D1,…,Dk,D1,…,Dk]的等级2k的张量,其中:output[i1,…, ik, i1,…, ik] = diagonal[i1, …,

2017-09-25 10:04:19 3012

原创 tensorflow更改变量的值

from __future__ import print_function,divisionimport tensorflow as tf#create a Variablew=tf.Variable(initial_value=[[1,2],[3,4]],dtype=tf.float32)x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.f

2017-09-24 17:33:12 7827 2

原创 tensorflow中的变量和占位符

import tensorflow as tfa = tf.constant(2, tf.int16)b = tf.constant(4, tf.float32)graph = tf.Graph()with graph.as_default(): a = tf.Variable(8, tf.float32) b = tf.Variable(tf.zeros([2, 2], tf.

2017-09-24 16:49:46 2810

转载 python中的with

http://www.cnblogs.com/zhangkaikai/p/6669750.html

2017-09-24 16:26:34 185

原创 tensorflow中的session和graph

import tensorflow as tfsess = tf.Session()a = tf.placeholder("float")b = tf.placeholder("float")c = tf.constant(6.0)d = tf.add(a, b)y = tf.add(d, c)print(sess.run(y, feed_dict={a: 3, b: 3}))实验结果:1

2017-09-24 16:25:56 283

原创 tf.constant学习

tf.constant官方文档https://www.tensorflow.org/api_docs/python/tf/constantconstant( value, dtype=None, shape=None, name='Const', verify_shape=False)

2017-09-24 11:37:16 5602

原创 Tensorflow之数据类型

import tensorflow as tf#定义常量tf.string是字符串类型hello = tf.constant('Hello,world!', dtype=tf.string)sess=tf.Session()print(sess.run(hello))#定义常量tf.bool是布尔类型,如果改为‘false’就会报错,显示更改为字符串类型boolean = tf.cons

2017-09-22 20:31:44 3987

转载 sklearn中svr(支持向量机回归)

支持向量机也可以用来回归from sklearn.svm import SVRimport numpy as npn_samples, n_features = 10, 5np.random.seed(0)y = np.random.randn(n_samples)X = np.random.randn(n_samples, n_features)clf = SVR(C=1.0, eps

2017-09-20 16:34:26 5951

原创 Tensorflow学习(一)使用flags定义命令行参数

import tensorflow as tf#第一个是参数名称,第二个参数是默认值,第三个是参数描述tf.app.flags.DEFINE_string('str_name', 'def_v_1',"descrip1")tf.app.flags.DEFINE_integer('int_name', 10,"descript2")tf.app.flags.DEFINE_boolean('boo

2017-09-20 13:54:57 2336 3

转载 Adaboost 算法的原理与推导

adaboost是集合很多弱的分类器,在进行第一次分类的时候,把分错的样本的权值增加,然后训练第二个分类器。http://blog.csdn.net/v_july_v/article/details/40718799

2017-09-20 13:35:47 155

转载 sklearn中朴素贝叶斯

http://scikit-learn.org/stable/modules/naive_bayes.html

2017-09-18 18:08:48 407

转载 sklearn中高斯混合模型

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

2017-09-18 18:04:59 2175

转载 sklearn中ababoost分类

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

2017-09-18 18:02:24 568

转载 ababoost算法与原理

http://www.360doc.com/content/14/1109/12/20290918_423780183.shtml

2017-09-18 16:20:38 557

转载 lstm+crf实现命名实体识别

lstm可以把长依赖转化成短依赖并且计算出依赖的概率,然后用CRF计算出来最短路径。http://x-algo.cn/index.php/2017/01/16/1639/

2017-09-18 13:37:48 1316

转载 python中xgboost说明文档

https://xgboost.readthedocs.io/en/latest/python/python_api.html

2017-09-18 10:23:23 449

转载 sklearn中逻辑回归参数调整

sklearn中逻辑回归的参数http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html参数解释:http://blog.csdn.net/sun_shengyun/article/details/53811483逻辑回归的参数主要有两个方面,一个是正则化的选择。 还有是

2017-09-14 20:15:16 16476

原创 python中os指定命令行的文件地址

python可以直接调用cmd进行命令行操作,怎么进入不同文件夹并且在文件夹下面执行命令。import osos.chdir('/home/ubuntu/program/CRF')os.system('crf_test -m zhanlianoomodel test.data > testdata2.txt')chdir()表示进入命令行地址 system()表示执行什么命令。

2017-09-13 14:53:35 1239

原创 python中的zip函数

python中的zip函数,可以同时遍历多个链表x=[1,2,3,4,5,6]y=['a','b','c','d','e']for num,str in zip(x,y): print(num,str)实验结果:1 a2 b3 c4 d5 e

2017-09-13 14:46:54 423

转载 jieba关键词提取算法

python中的jieba包也可以进行关键词提取。https://github.com/fxsjy/jieba

2017-09-11 16:17:20 1493

转载 linux中vi/vim教程

http://www.runoob.com/linux/linux-vim.html

2017-09-11 14:32:14 178

转载 GBDT(sklearn)进行回归

sklearn中可以使用GBDT进行分类和回归,下面是GBDT进行回归的文档http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#examples-using-sklearn-ensemble-gradientboostingregressor

2017-09-11 11:17:27 5635

转载 GBDT和XGBOOST的区别

陈天奇的xgboost在kaggle中大放异彩,下面网友讲解gbdt和xgboost的区别https://www.zhihu.com/question/41354392

2017-09-11 10:07:11 309

转载 GBDT(sklearn)参数详解

GBDT中也有一部分是决策树的参数,下面是官网的说明文档http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html下面是网友的调参实例http://www.cnblogs.com/DjangoBlog/p/6201663.html

2017-09-11 10:02:29 3910

转载 RandForest(sklearn)参数详解

RandForest的参数很大一部分跟决策树的参数一致。下面是sklearn随机森林的官网http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html下面是网友的总结http://blog.csdn.net/u012102306/article/details/52228516

2017-09-11 09:55:18 403

转载 sklearn中支持向量机的参数

官方文档http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html参数说明http://m.blog.csdn.net/github_39261590/article/details/75009069

2017-09-09 16:54:23 691

原创 gensim中doc2vec调参

在文本分类中,需要把文本转换成向量。官方文档https://radimrehurek.com/gensim/models/doc2vec.htmldoc2vec算法是基于word2vec算法。model = Doc2Vec(documents, size=100, window=8, min_count=5, workers=4)documents是训练文档,训练文档必须是一行一个文本,并且进行过分

2017-09-07 14:05:27 4901 5

原创 pyltp进行分词,词性检测,句子结构分析,命名实体识别

安装见本人写的另一篇博文。#!/usr/bin/env python# -*- coding: utf-8 -*-import sys, osROOTDIR = os.path.join(os.path.dirname(__file__), os.pardir)sys.path = [os.path.join(ROOTDIR, "lib")] + sys.path# Set your own

2017-09-07 13:53:58 3946

原创 Python中DataFrame按照行遍历

在做分类模型时候,需要在DataFrame中按照行获取数据以便于进行训练和测试。import pandas as pddict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]]data=pd.DataFrame(dict)print(data)for indexs in data.index:

2017-09-07 13:49:21 74094 1

原创 Python分类算法交叉验证

我们使用Sklearn-train_test_split随机划分训练集和测试集http://blog.csdn.net/cherdw/article/details/54881167实验代码:import gensimfrom sklearn.linear_model import LogisticRegressionimport pandas as pdfrom sklearn.model_

2017-09-07 13:45:22 2405

原创 Python使用doc2vec和LR进行文本分类

(1)数据预处理 a.对文本数据进行贴标签处理,标签数据类似入下:平素体质:健康状况:良,既往有“高血压病史”多年。#1其中1表示患有高血压,0表示没有患有高血压。 然后进行分开,文本存储在一个文件,标签存储在一个文件,文本内容和标签行对行对应。 b.对文本文件的内容进行分词。import jieba#读取数据生成sentencesfile=open(u'/home/ubuntu/file/

2017-09-01 17:42:18 4354 3

转载 Python中pyltp包安装和使用

https://pyltp.readthedocs.io/zh_CN/latest/install.html#pip(1)终端输入sudo pip install pyltp (2)下载模型数据 (3)请确保下载的模型版本与当前版本的 pyltp 对应,否则会导致程序无法正确加载模型。 如果版本不一致就会出现找不到model。

2017-09-01 17:15:22 9381 1

空空如也

勿在浮沙筑高台LS的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除