自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 论坛 (1)
  • 收藏
  • 关注

转载 kettle插入更新操作

kettle真的是一个很好的ETL工具,在数据转换的时候,学会使用kettle就会事半功倍。http://blog.csdn.net/bash020810/article/details/23205161

2017-06-30 13:58:59 935

原创 Neo4j初步学习

(1)在官网下载Neo4j然后安装个人版 (2)配置环境变量 (3)安装Neo4j之后,可以打开http://127.0.0.1:7474/browser/原始账号和密码都是NEO4J 重新设置账号密码。 打开连接输入create(node1:NUMBER{name : 1})-[:POINT_TO]->(node2:NUMBER{name : 2}), (node2)-[:POINT_T

2017-06-29 16:51:05 530

转载 python中scipy模块学习(假设检验)

https://www.kancloud.cn/wizardforcel/scipy-lecture-notes/129877

2017-06-28 17:51:14 4754

原创 python进行独立样本t检验

在判断两个样本的差异性的时候,我们使用独立样本t检验from scipy.stats import ttest_rela = [3,5,4,6,5,5,4,5,3,6,7,8,7,6,7,8,8,9,9,8,7,7,6,7,8] b = [7,8,6,7,8,9,6,6,7,8,8,7,9,10,9,9,8,8,4,4,5,6,9,8,12] t,p=ttest_rel(a,b) pri

2017-06-28 16:17:08 5031 2

转载 卡方检验以及P值的计算

在判断使用某一个项目对患者的费用的影响的时候,我们可以按照是否使用某个项目对患者进行分开,使用卡方检验就可以计算出来两组患者的费用差异情况。https://segmentfault.com/a/1190000003719712

2017-06-28 15:46:41 26996

原创 python建立二叉树并且可视化

定义节点class node: def __init__(self, id, people_number, distance, left_id=None, right_id=None): self.id = id self.people_number = people_number self.distance = distance

2017-06-28 15:13:06 3828 1

转载 使用pygraphviz画出二叉树

首先下载Graphviz,然后点击安装。 python中安装Graphviz包pip install Graphviz安装出错可以下载whl,然后本地安装。import pygraphviz as pgvA=pgv.AGraph(directed=True,strict=True)A.add_edge(1,2)A.add_edge(1,3)A.add_edge(2,4)A.add_edg

2017-06-28 13:06:51 1688

转载 sklearn之DTS学习

http://www.cnblogs.com/zhaoxy/p/5054938.html

2017-06-27 16:01:56 230

转载 主题模型及其在文本情感分析中的应用

文档讲述了主题模型在文本情感分析中的作用以及主题模型算法的介绍以及对比分析。http://blog.csdn.net/RayCchou/article/details/50983090

2017-06-26 11:11:39 1088

转载 主题模型之LDA

想生成一篇有很多主题的文档,我们就可以使用主题模型,我们在进行个性化推荐的时候,我们也可以根据文档的主题,然后在进行推荐,下面介绍一个LDA主题模型。http://blog.csdn.net/huagong_adu/article/details/7937616/

2017-06-26 10:33:12 225

转载 lstm在文本分类中的作用

lstm在词性检测和机器翻译发挥很大的作用,因此。这里讲述了lstm在文本分类中的作用。http://blog.csdn.net/u010223750/article/details/53334313?locationNum=7&fps=1

2017-06-23 16:36:30 1592

转载 CNN在文本分类中的应用

CNN在图像处理和下棋方面已经展示它的强大之处,本文讲述CNN在文本分类上面的应用。http://blog.csdn.net/zbc1090549839/article/details/53055386

2017-06-23 15:26:44 299

转载 xgboost学习

学习了GBDT之后,开始了解xgboost,但是觉得xgboost是一个效率增强的gbdt,鉴于本人的知识浅薄,请指正。http://blog.csdn.net/sb19931201/article/details/52557382

2017-06-21 17:44:52 232

原创 sklearn中的线性回归

以前使用spss做数据分析,现在使用sklearn做回归并且计算R方,实验代码如下:import csvimport pandas as pdimport numpy as npfrom sklearn.linear_model import LinearRegression # 读取csv数据到文档中data = pd.DataFrame.from_csv(u'C:\\Users\\p

2017-06-21 17:24:47 1161

原创 python中numpy和pandas学习

numpy和pandas是python中两个重要的用于科学计算的包,下面是本人的在删除数组上面的数据的一些练习。import pandas as pdimport numpy as npx = [[0, 1, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]size = len(x)df

2017-06-19 14:19:46 1145

转载 信息增益,信息增益率,Gini

在使用决策树的时候,我们通常通过信息增益,信息增益率,Gini三个指标来选择特征,下面详细介绍这三个指标。http://blog.csdn.net/xuxurui007/article/details/21788551

2017-06-16 10:19:08 698

原创 python层次聚类

在dataframe数据结构下编写python代码import ConnectOracleimport kmeansimport pandas as pdimport numpy as np# 疾病的出院诊断代码cyzddm = 'G45.901'# 生成数据,ghdj里面的数据结构为{ghdjidA:[1,2,3,5,7],ghdjidB:[2,3,6,7,8]ghdj =...

2017-06-15 16:58:42 1336

原创 python中Dataframe学习

通过dict创建dataframe的列索引import pandas as pddic2 = {'a':[1, 2, 3, 4], 'b':[5, 6, 7, 8],'c':[9, 10, 11, 12], 'd':[13, 14, 15, 16]}df=pd.DataFrame(columns=dic2.keys())print(df)

2017-06-14 11:26:19 463

转载 防止过拟合的几种范数的介绍

数据挖掘工程师一直是在跟过拟合进行抗争,由此产生了防止过拟合的几种范数,下面进行详细介绍http://blog.csdn.net/shijing_0214/article/details/51757564

2017-06-14 10:08:36 371

转载 LR与SVM的比较

在学习了很多的分类算法之后,脑中可能会出现一些疑问。这些分类算法都有什么区别,在这里详细讲解了LR与SVM的区别,为什么选择比较LR和SVM呢?因为它们确实有很多的共同之处。http://www.cnblogs.com/zhizhan/p/5038747.html

2017-06-14 09:55:49 429

转载 Jaccard系数学习

jaccard系数在文本查重与文本去重和文本聚类方面有很大的作用。http://baike.baidu.com/link?url=5W_WgutNIlLZ58uc2T5QAhtW-HOhAg2uW5QqSUmOdo3IWd1eSINmfHg0oeD3FODKKpc3k-0gufUUkQCfNcpokrOT8E9Jd1HetvjPoYr6l_LRKVz1E4qP4-8zVAeLkX0A

2017-06-12 10:30:51 1222

转载 python_sklearn层次聚类学习

sklearn中层次聚类有两种方法,自顶向上法和自下向上法。并且有三种计算类之间距离的方法。 Maximum linkage complete linkage Average linkage 代码如下:"""=============================================================================Various Agglo

2017-06-09 17:40:55 3050

转载 XGBoost学习

XGBoost在GBDT中的损失函数上面添加了正则化参数。http://blog.csdn.net/a819825294/article/details/51206410

2017-06-08 13:52:16 196

转载 机器学习之正则化

为了解决过拟合问题,并且让算法能够自己选取特征,可以使用正则化来处理这个问题。http://blog.csdn.net/zouxy09/article/details/24971995/

2017-06-08 13:11:26 193

转载 斯坦福机器学习之维数灾难

下面详细介绍机器学习的维数灾难http://blog.csdn.net/zbc1090549839/article/details/38929215

2017-06-07 15:37:43 988

转载 奇异值分解在推荐系统上的作用

奇异值分解由于自带特征提取,在用户推荐方面的作用很大。http://www.tuicool.com/articles/Mreuam

2017-06-07 15:26:24 320

转载 奇异值分解(SVD)原理与在降维中的作用

学习网页如下:http://www.cnblogs.com/pinard/p/6251584.html

2017-06-07 14:29:15 2180

转载 奇异值分解习题

由于奇异值分析的原理推导特别难,所以想先从习题下手。http://blog.csdn.net/tyzttzzz/article/details/50285317

2017-06-07 13:49:15 1967

转载 斯坦福机器学习之贝叶斯统计正则化

为了解决过拟合和欠拟合,有两种对特征进行处理的方法,第一种是去除掉一些特征,另一种就是对降低特征的参数值,让不重要的特征提供很少的贡献,正则化法就是采用第二种方法。http://www.jianshu.com/p/7ed336956ea0

2017-06-07 11:15:51 826

转载 斯坦福机器学习之特征选取

无论在回归和分类的时候我们都需要选择合适的特征来进行建模,以避免出现过拟合现象以及产生不必要的计算量。http://blog.csdn.net/linkin1005/article/details/43018827

2017-06-07 10:39:08 302

转载 斯坦福机器学习之交叉验证

在验证模型的好坏的时候我们可以使用交叉验证的方法进行验证,以便于用来进行特征选择和模型评估,交叉验证的方法如下:http://blog.csdn.net/linkin1005/article/details/42869331

2017-06-07 10:24:22 229

转载 Tensorflow之核心教程

TensorFlow核心教程 导入Tensorflow TensorFlow程序的规范导入声明如下:import tensorflow as tf这使Python可以访问TensorFlow的所有类,方法和符号。大多数文档假定您已经完成了。 计算图您可能会认为TensorFlow Core程序由两个独立部分组成:1.构建计算图。 2.运行计算图。 计算图形是一系列排列成节点的图形Tenso

2017-06-06 14:05:15 649

转载 Tensorflow基础知识学习

下面网页详细介绍了Tensorflow的基础知识https://www.tensorflow.org/get_started/get_started

2017-06-06 13:38:44 246

原创 Tensorflow基础学习

定义两个常量相乘import tensorflow as tf# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点# 加到默认图中.## 构造器的返回值代表该常量 op 的返回值.matrix1 = tf.constant([[3., 3.]])# 创建另外一个常量 op, 产生一个 2x1 矩阵.matrix2 = tf.constant([[...

2017-06-06 13:22:18 207

转载 EM算法学习

学习网页http://blog.csdn.net/zouxy09/article/details/8537620/

2017-06-06 11:05:03 167

转载 斯坦福机器学习之朴素贝叶斯

朴素贝叶斯是一个生成学习算法,下面详细介绍了朴素贝叶斯的原理。http://www.tuicool.com/articles/QZz2em

2017-06-06 10:23:57 231

转载 多项式分布学习

多项式分布的学习http://blog.csdn.net/apache_xiaochao/article/details/30535521

2017-06-05 13:35:06 782

转载 指数分布族和广义线性模型

学习地址http://www.cnblogs.com/wallacup/p/6024855.html?utm_source=itdadao&utm_medium=referral

2017-06-04 20:45:08 373

原创 Softmax学习笔记

在多分类神经网络的时候经常用到softmax函数作为激活函数,例如CNN,链接详细讲解了softmax的损失函数和误差训练函数。http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92...

2017-06-04 19:43:38 361

原创 Tensorflow之models中lstm测试

在Tensorflow中测试lstm 首先要下载数据数据存储在\simple-examples\data中 然后下载代码,代码存储在models-master\tutorials\rnn\ptb中 在python中运行ptb_word_lm.py,报编码错误时候删除decode(‘utf-8’) 然后运行ptb_word_lm.py 运行命令为 cd models/tutorials/r

2017-06-02 18:16:47 2006

空空如也

勿在浮沙筑高台LS的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除