自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 论坛 (1)
  • 收藏
  • 关注

转载 文本关键词提取算法

1.TF-IDF2.基于语义的统计语言模型文章关键词提取基础件能够在全面把握文章的中心思想的基础上,提取出若干个代表文章语义内容的词汇或短语,相关结果可用于精化阅读、语义查询和快速匹配等。采用基于语义的统计语言模型,所处理的文档不受行业领域限制,且能够识别出最新出现的新词语,所输出的词语可以配以权重。3.TF-IWF文档关键词自动提取算法 针对现有TF-IWF的领域文档关键词快速提取算法.该算法使

2017-04-28 14:41:12 563

翻译 python中的class

Python对于类的定义是简单直接的:class Greeter(object): # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False):

2017-04-25 10:49:22 287

翻译 python中的Functions

Python函数使用def来定义函数:def sign(x): if x > 0: return 'positive' elif x < 0: return 'negative' else: return 'zero'for x in [-1, 0, 1]: print sign(x)# Prints "negativ

2017-04-25 10:48:11 314

转载 python中的tuples

元组是一个值的有序列表(不可改变)。从很多方面来说,元组和列表都很相似。和列表最重要的不同在于,元组可以在字典中用作键,还可以作为集合的元素,而列表不行。例子如下:d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keysprint dt = (5, 6) # Create a tuple

2017-04-25 10:46:48 618

翻译 python中的set学习

集合是独立不同个体的无序集合。示例如下:animals = {'cat', 'dog'}print 'cat' in animals # Check if an element is in a set; prints "True"print 'fish' in animals # prints "False"animals.add('fish') # Add an elemen

2017-04-25 10:37:41 245

翻译 python字典学习

字典用来储存(键, 值)对,这和Java中的Map差不多。你可以这样使用它:d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some dataprint d['cat'] # Get an entry from a dictionary; prints "cute"print 'cat' in d

2017-04-25 10:31:46 403

翻译 python使用列表推导

列表推导List comprehensions:在编程的时候,我们常常想要将一种数据类型转换为另一种。下面是一个简单例子,将列表中的每个元素变成它的平方。nums = [0, 1, 2, 3, 4]squares = []for x in nums: squares.append(x ** 2)print squares # Prints [0, 1, 4, 9, 16]使用列表推

2017-04-25 10:15:22 228

翻译 python实现快速排序算法

def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[int(len(arr) / 2)] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x

2017-04-25 09:59:23 394

转载 文本分类的算法总结

本文对文本分类中的常用算法进行了小结,比较它们之间的优劣,为算法的选择提供依据。 一、决策树(Decision Trees) 优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求

2017-04-25 09:23:29 15326 6

转载 基于支持向量机的文本分类

基于支持向量机SVM的文本分类的实现1 SVM简介 支持向量机(SVM)算法被认为是文本分类中效果较为优秀的一种方法,它是一种建立在统计学习理论基础上的机器学习方法。该算法基于结构风险最小化原理,将数据集合压缩到支持向量集合,学习得到分类决策函数。这种技术解决了以往需要无穷大样本数量的问题,它只需要将一定数量的文本通过计算抽象成向量化的训练文本数据,提高了分类的精确率。 支持向量机(SVM)算法

2017-04-24 18:11:15 2799

转载 维特比算法(Viterbi Algorithm)

寻找最可能的隐藏状态序列 (Finding most probable sequence of hidden states)对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望能找到生成此序列最可能的隐藏状态序列。之前的那个问题变转,http://blog.csdn.net/jeiwt/article/details/8076019假设连续观察3天的海藻湿度为(Dry,Damp,

2017-04-21 13:42:16 1453

转载 bp神经网络学习

import numpy as np#使用逻辑回归进行分类def nonlin(x,deriv=False): if(deriv==True): return x*(1-x) return 1/(1+np.exp(-x))#待分类的数据X = np.array([ [0,0,1], [0,1,1],

2017-04-11 14:07:16 531

转载 中文分词算法总结

什么是中文分词 众所周知,英文是以 词为单位的,词和词之间是靠空格隔开,而中文是以字为单位,句子中所有的字连起来才能描述一个意思。例如,英文句子I am a student,用中文则为:“我是一个学生”。计算机可以很简单通过空格知道student是一个单词,但是不能很容易明白“学”、“生”两个字合起来 才表示一个词。把中文的汉字序列切分成有意义的词,就是中文分词,有些人也称为切词。我是一个学生,分

2017-04-11 11:00:33 6274

转载 Bagging和RandomForest学习

其实Bagging和随机森林的思想都是可以普适性的用在其他的分类器上的,思想其实都是可以通用的,只不过有的合适有的不合适而已,决策树就是一种比较合适用Bagging和随机森林来提升的分类器之一。BaggingBootStrap Aggregation:从样本中重采样(有重复的)选出n个样本,在所有的属性上,对这n个样本建立分类器(ID3、C4.5、CART、SVM、Logistic回归等)。 重复

2017-04-11 10:45:16 1135

转载 GBDT(MART)迭代决策树学习

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。后记:发现GBD

2017-04-11 10:14:35 378

转载 基于关联规则的分类算法

自1993年Agrawal提出数据库中的关联规则挖掘后,关联规则挖掘算法及应用得到迅速发展。关联规则的功能不再局限于概念描述。1997年,Ali等人提出了使用分类关联规则进行部分分类的思想,但他们当时认为关联规则在分类预测问题上很难取得重大的进展。在1998年纽约举行的数据库知识发现国际会议上,新加坡国立大学的Liu等人提出了基于分类关联规则的关联分类算法CBA,从此揭开了关联分类的序幕。 与传统

2017-04-11 10:09:38 9335 1

空空如也

勿在浮沙筑高台LS的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除