pytorch模型训练步骤

Pytorch 专栏收录该内容
6 篇文章 0 订阅

 

 

 

 

讲解代码textcnn模型

1.加载conf文件

x = import_module('models.' + model_name)
    config = x.Config(dataset, embedding)

2.加载model,初始化conf里面值

model = x.Model(config).to(config.device)

3.加载模型训练

model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)

为何要先声明是train

https://blog.csdn.net/qq_38410428/article/details/101102075

在eval的时候也要先声明

def evaluate(config, model, data_iter, test=False):
    model.eval()
    loss_total = 0

4.进行模型训练

model(trains)对应forward的参数

解释链接

outputs = model(trains)
model.zero_grad()
loss = F.cross_entropy(outputs, labels)
loss.backward()
# fgm.attack()  # 在embedding上添加对抗扰动
# outputs = model(trains)
# model.zero_grad()
# loss_adv = F.cross_entropy(outputs, labels)
# loss_adv.backward()  # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
# fgm.restore()  # 恢复embedding参数
# # 梯度下降,更新参数
optimizer.step()

 

  • 3
    点赞
  • 4
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值